Inclusion/Exclusion Branching for Partial Dominating Set and Set Splitting
نویسندگان
چکیده
Inclusion/exclusion branching is a way to branch on requirements imposed on problems, in contrast to the classical branching on parts of the solution. The technique turned out to be useful for finding and counting (minimum) dominating sets (van Rooij et al., ESA 2009). In this paper, we extend the technique to the setting where one is given a set of properties and seeks (or wants to count) solutions that have at least a given number of these properties. Using this extension, we obtain the fastest exact algorithms for Partial Dominating Set and the parameterised problem k-Set Splitting. In particular, we apply the new idea to the fastest polynomial space algorithm for counting dominating sets, and directly obtain a polynomial space algorithm for Partial Dominating Set with the same running time up to a linear factor. Using the new approach combined with previous work, we also give a polynomial space algorithm for Set Splitting that improves the fastest known result significantly.
منابع مشابه
Randomized Algorithm For 3-Set Splitting Problem and it's Markovian Model
In this paper we restrict every set splitting problem to the special case in which every set has just three elements. This restricted version is also NP-complete. Then, we introduce a general conversion from any set splitting problem to 3-set splitting. Then we introduce a randomize algorithm, and we use Markov chain model for run time complexity analysis of this algorithm. In the last section ...
متن کاملStrength of strongest dominating sets in fuzzy graphs
A set S of vertices in a graph G=(V,E) is a dominating set ofG if every vertex of V-S is adjacent to some vertex of S.For an integer k≥1, a set S of vertices is a k-step dominating set if any vertex of $G$ is at distance k from somevertex of S. In this paper, using membership values of vertices and edges in fuzzy graphs, we introduce the concepts of strength of strongestdominating set as well a...
متن کاملSemidefinite relaxation for dominating set
‎It is a well-known fact that finding a minimum dominating set and consequently the domination number of a general graph is an NP-complete problem‎. ‎In this paper‎, ‎we first model it as a nonlinear binary optimization problem and then extract two closely related semidefinite relaxations‎. ‎For each of these relaxations‎, ‎different rounding algorithm is exp...
متن کاملOn independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملThe Inclusion-Exclusion Principle for IF-States
Applying two definitions of the union of IF-events, P. Grzegorzewski gave two generalizations of the inclusion-exclusion principle for IF-events.In this paper we prove an inclusion-exclusion principle for IF-states based on a method which can also be used to prove Grzegorzewski's inclusion-exclusion principle for probabilities on IF-events.Finally, we give some applications of this principle by...
متن کامل